If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20-48x^2=0
a = -48; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-48)·20
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*-48}=\frac{0-16\sqrt{15}}{-96} =-\frac{16\sqrt{15}}{-96} =-\frac{\sqrt{15}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*-48}=\frac{0+16\sqrt{15}}{-96} =\frac{16\sqrt{15}}{-96} =\frac{\sqrt{15}}{-6} $
| -8(d-88)=-88 | | y+31/10=5 | | 1712=414 | | 1712=414 | | w3=24 | | -2x+8=68 | | -3(x)=5x^2-6x+3 | | 2n^-1=17 | | r-83=26 | | (x-2)°=66° | | x-2=66 | | 9c=207 | | 4c+3=$11.67 | | 20-7v=-36 | | 1.5x+10=47.5 | | 8c+30=64 | | g+17/4=8 | | 7c+20=34 | | d/4+55=65 | | 9+3k=75 | | z/6+36=42 | | 6x–4+2x+8=180 | | g-6-6=-66 | | (6x–4)+(2x+8)=180 | | 12h=213 | | 3x-4+3x-8=17- | | b=3.89+-1.333333333 | | 3x-(-7+3x)=7 | | 3(2x-5)^2+7=75 | | x(12–5x)=0 | | 5/6=72/x | | 2x^2+7=75 |